Effects of pH Value of the Electrolyte and Glycine Additive on Formation and Properties of Electrodeposited Zn-Fe Coatings

نویسنده

  • İsmail Hakki Karahan
چکیده

Environmentally friendly and cyanide-free sulfate bath under continuous current and the corrosion behavior of electrodeposits of zinc-iron alloys were studied by means of electrochemical tests in a solution of 3.5% NaCl in presence and absence of glycine. The effects of pH on the quality of Zn-Fe coatings were investigated in order to improve uniformity and corrosion protection performance of the coating films. The deposit morphology was analyzed using scanning electron microscopy (SEM), and X-ray diffraction (XRD) was used to determine the preferred crystallographic orientations of the deposits. It was found that the uniformity and corrosion resistance of Zn-Fe coating films were strongly associated with pH of the coating electrolyte. To obtain the effect of pH on the film quality and corrosion performances of the films, the corrosion test was performed with potentiodynamic anodic polarization method. It was also observed that uniformity and corrosion resistivity of the coating films were decreased towards pH = 5 and then improved with increasing pH value of the electrolyte. The presence of glycine in the plating bath decreases the corrosion resistance of Zn-Fe coatings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CHARACTERIZATION OF CO-FE MAGNETIC FILMS FABRICATED BY GALVANO-STATIC ELECTRODEPOSITION

In this research, nanocrystalline Co-Fe coatings were electrodeposited on copper substrate. The influence of current density on different properties of the films at two pH levels was investigated. All the coatings showed nodular structure with rougher morphology at higher current densities. Due to anomalous deposition at higher current density, the amount of iron content increased and reached i...

متن کامل

Effect of Cobalt Concentration on Structural and Magnetic Properties of Co-Fe Thin Films

Co-Fe films were electrodeposited on Cu substrate from electrolytes with different Co concentration  levels. X-ray diffraction (XRD) was used  to  investigate  the  films  crystal  structures. The  results  indicate that  if  the  Co  concentration  is  less  that  the  Fe  concentration,  the cubic  structure  appears  in  the  films, while  the  hexagonal  structure dominates when  the C...

متن کامل

بررسی خواص و مقایسه خوردگی و سایش پوشش‌های Zn-Ni و Zn-Ni/P

In this research, Zn-Ni and Zn-Ni/PTFE coatings were electrodeposited from sulfate-based electrolytes. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques were used to investigate the  corrosion properties of the coatings. Hardness and tribological behavior of the coatings were examined by the Vickers microhardness testing machine and the  pin-on-disc method...

متن کامل

Influences of Bath Stirring Rate on Synetics of Nano Composite Ni-SiC-Gr Coatings on St37 via Electrodeposition Process

In this study, electrochemical deposition of Ni-SiC-Gr nano composites was studied. The Watts bath was used for electrodeposition. The SiC and graphite powders were suspended in the electrolyte and stirred. The effects of changes in bath stirring rate on the composite coating were investigated. The X-Ray diffraction (XRD), scanning electron microscopy (SEM) and field emission scanning electron ...

متن کامل

Electrodeposition and Characterization of Sn-Zn Alloy Coatings from Sulfate Based Baths

Tin-Zinc alloy coatings have many applications because of their unique properties such as corrosion resistance, solderability and flexibility. In this study, the effect of current density, temperature and pH on chemical composition, cathodic current efficiency, morphology and structures of the coatings was investigated. The results illustrated that, at low current densities (<0.5 mA/cm2), the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013